If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-19=-2
We move all terms to the left:
12x^2-19-(-2)=0
We add all the numbers together, and all the variables
12x^2-17=0
a = 12; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·12·(-17)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{51}}{2*12}=\frac{0-4\sqrt{51}}{24} =-\frac{4\sqrt{51}}{24} =-\frac{\sqrt{51}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{51}}{2*12}=\frac{0+4\sqrt{51}}{24} =\frac{4\sqrt{51}}{24} =\frac{\sqrt{51}}{6} $
| 3x+5(x-8)=3(x-10) | | 5(t+6)=7 | | F(x)=(4x-7)(x+5)(x) | | 5(x-10)=10(x+2) | | 12x+20x-9+3=-8x+3-9 | | 7x-4x+14=2x+7 | | x+(1073+1108)÷3=1000 | | 4p-11p+-2=5 | | 250-x/50=0 | | 9x-3x=63 | | 4x+28=9x+-9+22 | | x+(1073+1108)/3=1000 | | x+1073+1088/3=1000 | | 30x^2+49x-20=0 | | 59=-7s+5 | | 4t-3t=3 | | 2x(3x^2-3x+5)=0 | | x+4x=x | | 9x2−6x+82=0 | | -16k=12k+6=-14 | | -6y+-2=-5y-3 | | -6y+3=-6y+2 | | m+15/3=-1 | | 2x2=13x+45 | | 8|x|+19=11 | | 1/3q+7=9 | | 9+(x−9)2=0 | | -18x+18=20x-5 | | 89x-5=1147 | | 14+7x=9x-2 | | P=14+6/13d | | 6k-5k-1=14 |